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Effect of Various Treatments on
Toxicity of Inhaled Vinylidene Chloride
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The toxicity of vinylidene chloride (VDC) was studied in mice and rats exposed to various concentrations of
the vapors for 23 hr/day. In addition, the ability of various treatments to alter parameters of toxicity was
evaluated. Mice were more sensitive than rats both to the acute lethal and hepatotoxic effects of VDC.
Disulfiram treatment reduced the acute lethal and hepatotoxic effects of inhaled VDC and reduced the levels
of covalent bound radioactivity in the liver and kidney after the intraperitoneal administration of 14C-VDC.
Treatment with diethyldithiocarbamate and thiram also protected mice from the acute lethal effects of VDC.

Introduction
Vinylidene chloride (1, l-dichloroethylene, VDC)

is an intermediate used in the production of poly-
mers and the synthesis of other chemicals. Since en-
vironmental contamination and human exposure
are inevitable results of its widespread use, the risks
of such exposures should be understood.
The toxicity of VDC, which was recently re-

viewed (1, 2), has been studied in several mam-
malian species (3). A continuous 90-day inhalation
exposure to 189 mg/m3 (48 ppm) of VDC produced
deaths in monkeys and guinea pigs but not in
dogs and rats. In addition, morphological changes
occurred in livers from monkeys, dogs, and rats and
kidneys from rats. The hepatic lesions included
focal necrosis, hemosiderin deposition, and fatty
metamorphosis. The primary renal lesion was nu-
clear hypertrophy of the tubular epithelium.
VDC toxicity was influenced by various

parameters. Female rats were more sensitive than
males to the oral toxicity of VDC (4). The nutri-
tional status also influenced toxicity. For example,
starved rats were more sensitive to VDC (5), and
the diurnal change in toxicity was correlated with
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hepatic levels of glutathione (GSH).(6). Additional
studies with diethyl maleate (7) and cysteine (8)
pretreatment suggested that hepatic levels of GSH
influenced VDC toxicity. Metabolic studies indi-
cate that (a) a major pathway for detoxification of
VDC was by conjugation with GSH and (b)
hepatotoxicity was associated with covalent binding
of VDC metabolites in the liver (9).
The purpose of this study was to determine the

acute toxicity of continuously inhaled VDC and
evaluate the effect of various treatments on this
parameter. The treatments were selected to alter
the metabolic activation of VDC or promote the
detoxification of VDC. In addition, adrenergic
blocking agents were used, since VDC exposure
sensitized rat hearts to catacholamines (10).

Methods
CD-l mice and CD rats (Charles River Breeding

Laboratories, North Wilmington, Massachusetts)
were used in these studies. Animals were given free
access to feed (Wayne Lab-Blox, Allied Mills, Inc.
Chicago, Illinois) and tap water. Mice received di-
sulfiram (0.10%'o in feed 2 to 3 days before and during
exposure), diethyldithiocarbamate (0.12% in feed 3
days before and during exposure), thiram (0.10% in
feed 3 days before and during exposure), cysteine
(0.10% or 0.50% in feed 3 days before and during
exposure), methionine (0.10% or 0.50% in feed 3
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days before and duiring exposure), N-acetylcysteine
(1,200 mg/kg orailly every day during exposure),
SKF 525-A (50 mg/kg II' every day during expo-
sure), cohaltous chloride 6H.O (60 mg/kg IP daily
for 2 days before exposure), BAL (50 mg/kg SC
daily during exposure), phenoxybenzamine (10
mg/kg IP datily tor first 2 days of exposure), pro-
pranolol (10 mg/kg IP daily during exposure), Vi-
tamin C (100 mg/kg IP daily during exposure), or
DL-a-tocopherol acetate (Vitamin E, 750 mg/kg or-
ally once 2 days before exposure and on first day of
exposure).

Animals were exposed to VDC for 22-23 hr/day
for 7 days in stainless steel chambers. Control ani-
mals were similarly housed and exposed to room
air. VDC vapors were generated by bubbling ni-
trogen into a flask that contained liquid VDC with a
purity of 99% (Aldrich Chemical Co. Milwaukee,
Wisconsin). A stream of air carried the vapors from
the flask to the chamber. The concentration of
VDC was measured with a Varian 2700 gas
chromatograph equipped with a flame ionization de-
tector and a stainless steel column packed with
0.4% Carbowax 1500 on Carbopak A.
Serum glutamic-oxaloacetic transaminase

(SGOT) (11) and serum glutamic-pyruvic trans-
aminase (SGPT) (12) were determined in cardiac
blood from mice and aortic blood from rats. Hepat-
ic nonprotein sulfhydryl concentration (13) was de-
termined in the livers of male mice that received
various treatments for a total of 10 days (i.e., 3 days
before exposure and 7 days during exposure to
room air).

Covalent bound radioactivity was measured in
male mice after the intraperitoneal administration of
3 mg/kg 14C-VDC (20,uCi/kg) which was obtained
from New England Nuclear (Boston, Massa-
chusetts) with a specific activity of 0.652
mCi/mmole. The 14C-VDC was slowly bubbled
into the peanut oil vehicle with nitrogen. The tis-
sues were homogenized in cold water and ma-
cromolecules were precipitated with an equal vol-
ume of IN perchloric acid (PCA). The precipitate
was washed with 5 ml of 0.2N PCA, 0.2N PCA,
95% ethanol saturated with sodium acetate, abso-
lute ethanol, ethanol:ether (3: 1), heated 1 hr at 37°C
in 4 ml of 0.5N sodium hydroxide, and afterwards 3
ml of 30% thichloroacetic acid (TCA) was added.
The precipitate was washed with 5 ml of 5% TCA
and heated in 5% TCA for 20 min on a boiling water
bath. The pellet was washed with 5 ml of 5% TCA
and dissolved in 10 ml of 0.3N sodium hydroxide.
Radioactivity and protein (14) were determined on
this fraction, and the results were expressed as
DPM/mg protein.

Mortality data were evaluated in terms of the

concentration of VDC required to kill 50% of the
animals (LC50) (15) and the time required to kill 50%
of the animals at 20 ppm of VDC (LT50) (16). Other
data were analyzed by the two-sample rank test (17)
with a level of significance selected as p<0.05. Data
are reported as the means + SE.

Results
VDC was more toxic in male mice than male rats

both in terms of hepatotoxicity, as measured by
SGOT and SGPT, and lethality (Table 1). In addi-
tion, male mice were more sensitive to the lethal
effects of VDC than females, since at the end of 3
and 7 days exposure to 40 ppm VDC 5/10 and 7/10
males were dead, respectively, while no females
were dead. Exposed mice had a reduced feed con-
sumption (Table 2), weight loss, rough coats, and
were lethargic. In addition, the body temperature of
debilitated mice was reduced by 5 to 7°C.

Table 1. Toxicity of 60 ppm VDC in male mice and rats.

Ratio
Days SGOT, SG PT, dead/

Species exposed I U/1.'" I U/l." exposed

Mouse 1 1,946 + 270 3,045 ± 209 2/10
2 751 ± 150 1,112 226 8/10

Rat 1 74 6 44 7 0/10
2 263 33 198 29 0/10

aMean + SE for 2 to 5 determinations.

Table 2. Feed consumption in male mice exposed to VDC.

Feed Consumption. g/mouse/day"
Treatment VDC=0 VDC=41 ppm VDC=80 ppm

None 4.4 ± 0.1 1.5 0.3 1.7 ± 0.1
Cysteine (0. 1%) 4.6 ± 0.2 1.8 ± 0.6 1.8 ± 0.3
Methionine (0.1%) 4.8 ± 0.1 1.5 ± 0.1 1.8 ± 0.1
Disulfiram (0. 1%) 4.2 ± 0.1 3.3 ± 0.3 2.8 ± 0.1

'Determined on a cage basis for a total of 10 mice, housed 5
mice/cage.

The effects of various treatments on the LC5,(
value of VDC determined at the end of I and 2 days
exposure are presented in Tables 3 and 4, respec-
tively. The only compounds that dramatically al-
tered the toxicity of VDC were disulfiram, diethyl-
dithiocarbamate (DDC), and thiram. Although the
exposure lasted for 7 days, the pattern of deaths did
not permit a calculation of the LC50 value for
each treatment on the same day. If the treatments
were evaluated in terms of the LT50 value (Table 5),
then the 0.50% methionine and cysteine diets also
would provide a degree of protection. The hepatic
nonprotein sulfhydryl concentration was not in-
creased in control mice that received various treat-
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Table 3. One-day LC5, of VDC in mice.

LC50 ppm"

Treatment Male Female

Control 98 (82-118) 105 (92-121)
Disulfiram (0.10%I) >320 >320
Cysteine (0.10%) 98 (76-127) 92 (74-113)
Methionine (0.10O%) 113 (93-138) 113 (93-138)
CoC12 113 (81-157) 123 (85-179)

aLC50 in ppm (95% confidence limits) or approximation of
LC50.

Table 4. Two-day LCw of VDC in male mice.

Treatment LC50, ppma

Control 35 (25-47)
Disulfiram (0.10%o) > 160
DDC (0.12%) > 160
Thiram (0.10W) > 160
N-Acetylcysteine 20 ( 7-25)
Methionine (0.50%) 38 (28-51)
Cysteine (0.50%1) 43 (31-58)
SKF 525-A 26 (17-35)
Phenoxybenzamine 35 (25-47)
Propranolol 28 (19-37)
Vitamin C 35 (25-46)
Vitamin E 35 (25-47)

aLC50 in ppm (95% confidence limits) or approximation of
LC50.

ments for a total of 10 days (Table 6).
Disulfiram protected male mice from the

hepatotoxic effects of 60 ppm VDC as measured in
terms of SGOT and SGPT values (Table 7). Pro-
tection was observed after I day exposure. How-
ever, after 2 days exposure there was no evidence
of protection, as measured in terms of these en-
zymes. At the end of the second day of exposure to
60 ppm VDC there were 8/10 dead in the group
receiving the control diet and 2/10 dead in the group
receiving the disulfiram diet.

Table 5. LT50 at 20 ppm of VDC for male mice.

Treatment LT50, daysa
Control 4.0 (3.6-4.4)
Disulfiram (0.10%'o) >7
DDC (0.12%) >7
Thiram (0.10%) >7
Cysteine (0.50%) >7
Methionine (0.50%o) -7
N-Acetylcysteine 1-2
SKF 525-A 2.4 (1.7-3.4)
Phenoxybenzamine 3.4
Propranolol 2.7 (2.0-3.7)
Vitamin C 2.6 (1.9-3.5)
Vitamin E 3.4

aLT50 in days (95% confidence limits) or approximation of
LT50.

The interaction of disulfiram and VDC was also
evaluated in terms of covalent bound radioactivity
after the intraperitoneal administration of 14C-VDC

to male mice (Table 8). Covalent bound radioactiv-
ity was detected in the liver and kidney in control
mice at 4 and 24 hr after 14C-VDC. Disulfiram
treatment reduced these values in both tissues at
both times.

Table 6. Hepatic nonprotein sulfhydryl concentration
in male mice.

Concentration,
Treatment % of control"

None 100 ± 3
N-Acetylcysteine 91 ± 2
Methionine (0.50%) 87 I1
Cysteine (0.50%) 84 ± 2
Disulfiram (0.10%o) 102 ± 2
DDC (0.12%) 100 ± 3
Thiram (0.10%o) 95 ± 2

"Mean ± SE for 4 determinations.

Table 7. Toxicity of 60 ppm VDC in control and
disulfiram-treated male mice.

Days
Exposed SGOT, SGPT,

Diet to VDC IU/1.a IU/l.a
Control 1 1,946 ± 270 3,045 ± 209

2 751 ± 150 1,112 ± 226

Disulfiram 1 140 ± 38 66 ± 11
2 784 + 332 1,236 ± 668

aMean ± SE for 2 to 5 determinations.

Table 8. Covalently bound radioactivity after 14C-VDC in control
and disulfiram-treated male mice.

DPM/mg proteinaTime after
Tissue 14C-VDC, hr Control Disulfiram
Liver 4 88 14 31 7

24 58 2 23 5
Kidney 4 134 9 32 7

24 88 2 27 4

aMean + SE for 4 determinations.

Discussion
The results of this study demonstrate that (1)

mice are more sensitive than rats to the lethal and
hepatotoxic effects of VDC, (2) disulfiram reduces
the acute lethal and hepatotoxic effects of inhaled
VDC and reduces the levels of covalent bound
radioactivity in the liver and kidney after 14C-VDC
(3) diethyldithiocarbamate, thiram and, to a lesser
extent, methionine and cysteine also protect mice
from the lethal effects of VDC.

Disulfiram, diethyldithiocarbamate, and thiram
are structurally related dithiocarbamates. Disul-
firam is used clinically in alcohol therapy programs
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and thiram is used both in the agricultural and rub-
ber industry. Disulfiram is metabolized to diethyl-
dithiocarbamate (18), and both compounds alter the
metabolism of xenobiotics (19) and protect against
several types of drug-induced toxicities (20, 21). In
addition, members of the dithiocarbamate class
have radioprotective properties (22).
Although the mechanisms by which the

dithiocarbamates tested protected against VDC tox-
icity is uncertain, speculations may be offered con-
ceming such mechanisms. For these speculations, it
was assumed that VDC was metabolized by the
hepatic mixed-function oxidase system to a com-
pound that produced hepatotoxicity which resulted
in death. If disulfiram reduced the metabolic activa-
tion of VDC, then SKF 525-A (23) and cobaltous
chloride (24) should have provided protection. If
treatments protected by providing additional sul-
fhydryl groups for the detoxification of VDC epox-
ides then doses of N-acetylcysteine that protected
mice from acetaminophen toxicity (25) should also
have protected against VDC toxicity. Although
cysteine and methionine provided a degree of pro-
tection the effect was not as dramatic as with the
dithiocarbamates. The failure of compounds to alter
the hepatic nonprotein sulfhydryl concentration
may be due to (a) pharmacokinetic properties of the
compounds and/or (b) adaptation of the liver to an
increased supply of sulfhydryl containing com-
pounds.
The results suggest that disulfiram protects

against toxicity by a mechanism that involves more
than an inhibition of VDC activation or an increase
in VDC detoxification. Possibly, disulfiram is
superior to the other nondithiocarbamate com-
pounds because both mechanisms are operating
simultaneously. In other words, disulfiram and its
metabolites may not only reduce the activation of
VDC but also increase the extent of detoxification.
In this regard, dithiocarbamates may serve as more
effective molecules for detoxifying VDC metabo-
lites than some of the sulfhydryl containing com-
pounds that were tested.
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